A Constructive Formalization of the Fundamental Theorem of Calculus

نویسنده

  • Luís Cruz-Filipe
چکیده

We have finished a constructive formalization in the theorem prover Coq of the Fundamental Theorem of Calculus, which states that differentiation and integration are inverse processes. In this formalization, we have closely followed Bishop’s work ([4]). In this paper, we describe the formalization in some detail, focusing on how some of Bishop’s original proofs had to be refined, adapted or redone from scratch.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOME FUNDAMENTAL RESULTS ON FUZZY CALCULUS

In this paper, we study fuzzy calculus in two main branches differential and integral.  Some rules for finding limit and $gH$-derivative of $gH$-difference, constant multiple of two fuzzy-valued functions are obtained and we also present fuzzy chain rule for calculating  $gH$-derivative of a composite function.  Two techniques namely,  Leibniz's rule and integration by parts are introduced for ...

متن کامل

Non-constructive complex analysis in Coq

Winding numbers are fundamental objects arising in algebraic topology, with many applications in non-constructive complex analysis. We present a formalization in Coq of the winding numbers and their main properties. As an application of this development, we also give non-constructive proofs of the following theorems: the Fundamental Theorem of Algebra, the 2-dimensional Brouwer Fixed-Point theo...

متن کامل

18th International Workshop on Types for Proofs and Programs, TYPES 2011, September 8-11, 2011, Bergen, Norway

Winding numbers are fundamental objects arising in algebraic topology, with many applications in non-constructive complex analysis. We present a formalization in Coq of the winding numbers and their main properties. As an application of this development, we also give non-constructive proofs of the following theorems: the Fundamental Theorem of Algebra, the 2-dimensional Brouwer Fixed-Point theo...

متن کامل

Certified Higher-Order Recursive Path Ordering

Recursive path ordering (RPO) is a well-known reduction ordering introduced by Dershowitz [6], that is useful for proving termination of term rewriting systems (TRSs). Jouannaud and Rubio generalized this ordering to the higher-order case thus creating the higher-order recursive path ordering (HORPO) [8]. They proved that this ordering can be used for proving termination of higher-order TRSs wh...

متن کامل

Extracting a Normalization Algorithm in Isabelle/HOL

We present a formalization of a constructive proof of weak normalization for the simply-typed λ-calculus in the theorem prover Isabelle/HOL, and show how a program can be extracted from it. Unlike many other proofs of weak normalization based on Tait’s strong computability predicates, which require a logic supporting strong eliminations and can give rise to dependent types in the extracted prog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002